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Introduction

Performance in the high angle of attack regime is required by many different types

of aircraft. Military aircraft, such as fighters, utilize flight in this regime to improve

maneuverability. Civilian aircraft, such as supersonic or hypersonic transports, will also

need to operate in this regime during take off and landing, due to their small highly swept

wings. Flight at high angles of attack is problematic due to the vortices being created on

the nose of the aircraft. These vortices tend to become asymmetric and produce side

forces. At the same time, the rudders are less effective because they are becoming

immersed in the flow separating from the wings and fuselage. Consequently, the side

force produced by the vortices on the nose tend to destabilize the aircraft. This situation

may be corrected through the use of a forebody flow control system such as tangential slot

blowing. In this concept, a jet is blown from the nose in an effort to alter the flow field

around the nose and diminish the destabilizing side force. Alternately, the jet may be used

to create a side force which could be used to augment the rudders. This would allow the

size of the rudders to be decreased which would, in turn, diminish the cruise drag.

Therefore, the use of a tangential slot blowing system has the potential for improving both

the maneuver performance and the cruise performance of an aircraft.

Present Work

The present study was conducted to explore the physics of forebody flow control.

The study consisted of two major thrusts:

- Exploration of forebody flow control with tangential slot blowing.

- Investigation of flow field response to a general perturbation.





Forebody Flow Control

The first thrust explored issues dealing with tangential slot blowing. A tangent-

ogive cylinder configuration was utilized for which experimental measurements were

available. The compressible Thin-Layer, Reynolds-Averaged, Navier-Stokes equations

were solved numerically on this configuration. A theory detailing the force production

mechanisms was developed. This theory also explained their relative importance and

contribution to the total force production. Also explored in this thrust were the effects on

force production of: 1) angle of attack, 2) slot location and 3) jet blowing strength. The

details of the study were published and are included in Appendix A. The results of this

study will be useful in the optimization and installation of tangential slot blowing system.

During the course of the study, a question was raised about the effects of the

numerical treatment of the aft end of the body. Many studies had been conducted,

including the present one, where the aft end of the body was not included in the

computation. 1-5 Such treatment had the effect of removing the influence of the tail

geometry and wake from the computations. A companion study was launched to identify

and quantify these effects. Computations in which the aft end of the body was included

were carded out. The configuration (with the exception of the aft end of the body) and

flow conditions were identical to the ones in the first part of the present study.

Comparisons were made between the two sets of computations. It was concluded that the

omission of the aft end of the geometry did not change the fundamental physics of the force

production although it affected the force levels. The details of this companion study were

also published and are included in Appendix B.

Flow Response to a Disturbance

The second thrust consisted of a fundamental examination of the behavioral

characteristics of the flow field. If the characteristics of flow field response to general

perturbations were known, a flow control system could be designed to take advantage of

them in the most efficient manner. The guess work inherent in the design of such a

system would be removed and the design period would be shortened.

Adjoint eigensolutions of the governing equations are capable of characterizing the

perturbation receptivity properties of the steady flow field. This method has been shown

to be especially applicable to flow fields containing large separated regions. A single





solutionof theadjoint setof equationswould provideinformationaboutthequasi-linear

responseof the flow field to a generalperturbation. Consequently,a large amountof

initial solutionswouldnotberequiredto determinethebehaviorof aflow field awayfrom
an initial steadystate. This would greatlydiminish the computationaleffort neededto

exploretheresponseof theflow field to a newor different flow control concept,suchas
blowing, suction,or wall perturbation. This generalapproachhasbeendemonstratedfor

analyticallydescribable configurations in two dimensions. 6 The present work prepares the

way for the treatment of general configurations in two dimensions with the eventual goal of

applying it to three-dimensional general configurations.

The mathematical theory was developed with the assistance of D. C. Hill. This

resulted in a set of equations which was adjoint to the Navier-Stokes equations while at the

same time was not inherently unstable if marched in time. The theory for the numerical

treatment of this set of equations was then developed. Issues involving discretization,

coordinate transformation, flux linearization, factorization, and implicit formulation of the

governing set of equations were resolved. Initial stability analysis of the time marching

scheme was also carded out. At the conclusion of this study, problems with numerical

stability had not been solved. Details of the mathematical theory and numerical

formulation can be found in Appendix C.
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Abstract

This work explores the mechanisms by which tangen-
tial slot blowing creates forces on a body at a high angle of

attack. The study is conducted numerically by solving the

three-dimensional, compressible-flow Navier-Stokes equa-

tions. A tangent-ogive cylinder configuration is used with

the blowing slot located both on the nose and oil the cylin-

drical part of the body. The angle of attack used is 30 deg.,

the Mach no. is 0.2 and the Reynolds no., based on diam-

eter, is 52000. Several conclusions were made concerning

the physical mechanisms by which the jet interacts with
the ambient flow field to produce a side force: (1) A cen-

trifilgal force component is created at the wall due to the

momentum of the jet being forced to follow the curvature

of the surface. (2) A large amount of vorticity is added to

the flow field by the jet. In the region of the slot, the vortic-

ity has the effect of inducing circulation around the body.
Downstream of the slot, the vorticity alters the strength

of the nose vortices. (3) The position of the nose vortices

can be altered do to the jet changing the location of sepa-

ration. And (4), the jet has the ability to excite unstable

behavior producing a global change in the character of the
flow.

Nomenclature

cy sectional side force coefficient: d(Cy)/dx

Cv side force coefficient: Force/q_Sr, i

Cj, blowing momentum coefficient

H helicity density
P circulation

i_</_o Mach number

Re Reynolds number

Sj slot area

S,._I reference area

Uj jet velocity
V flow velocity vector

w vorticity vector
r normal distance from surface

c_ angle of attack, degrees

p density

Subscripts

D diameter of the model

j jet
oo freestream reference conditions

" Research Scientist. Member AIAA.

Copyright @1992 by G. I. Font. Published by
the A,nerican Institute of Aeronautics and Astro-
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Introduction

The continuing need to increase the maneuverability

of aircraft, requires that they be flown at ever in,'rensing

angles of attack. At high angles of attack, however, the
control surfaces, namely the rudders and elevators, become

immersed in separated flow. This renders them ineffective

in controlling the aircraft. Complicating the situation fitr-
ther, are the vortices emanating from the nose which, at

high angles of attack, tend to become asymmetric, creating
a side force which makes the aircraft prone to departure

from controlled flight.

This problem can be alleviated by either providing

supplementary control mechanisms or decreasing the re-

quired control forces. One system which capable of doing

both is tangential slot blowing. The concept of tangential

blowing involves injecting a thin jet tangential to the sur-
face from a slot situated longitudinally along the body, as

shown in Figure 1. The jet initially will follow the curva-
ture of the surface and later will separate. In the process,

the asymmetry in the nose may be diminished or enlarged
in order to reduce an unwaalted side force or provide one

which can be used to control the aircraft.

Previous Work

Many studies have been conducted in an effort to

explore the capabilities of a pneumatic system for the pro-
duction of a side force. A few examples of these studies

are Ref. 1-11. In the course of these studies, several mech-

anisms have been proposed to explain how a tangential

jet produces a side force on a body at a high angle of at-

tack. Ref. 1 studied the problem of a tangential jet in a
two dimensional fashion and concluded that the effects of

the jet could be characterized as a creation of circulation

around the cylinder. References 2-4, while studying a dis-

crete jet located on the nose of a body, proposed that the

flow could amplify perturbations, such as that provided by

a jet. Ref. 5 determined that the symmetric flow field was

convectively unstable and that a perturbation at the nose
could cause a shift to the asymmetric state. Ref. 6 also

studied a jet located on the nose of the body, but instead

of a discrete jet, a jet blowing from a slot was used. The

authors suggested that the main function of the jet was

to alter the separation pattern and change the position of
the vortices on the lee side of the body. Ref. 7 - 9 studied

a slot-jet located aft of the nose. The authors eonchtded

that a major mechanism for the interaction of the jet with
the ambient flow field was the vorticity released by the jet.

Present Work

The objective of the present work is to study the

physical mechanisms which result in force production by
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tan_outialjet.blowing. An understanding of these mech-

anisms will result in an system better optimized to the

nfission requirements and installation restrictions. This
_tlltlx, • was conducted by numerically solving the compress-

ible. Reynolds-averaged, thin-layer Navier-Stokes equa-

tions. The code used is FaD. It is fully descrihed in Ref.

12-14 and will not be detailed fixrther here. Comparison

of the computatiou with experiments for the current con-

figuration, and flow solver were carried out in Ref. 10.

The angle of attack used in tile present computations is 30

dog., the Math no. is 0.2 and the Reynolds no. is 52000.

These conditions were chosen to facilitate comparison with

previous studies. 8'|°'|t The grid contains 52, 100, and 60

points in the axial, circumferential, and normal directions,

respectively. The outer boundaries are 211 body dian|eters

from the surface. The exit plane is located at the end of the

body. Solution of the flow field is accomplished in a zonal
manner. Communication between the zones is carried out

through a one cell overlap. The jet is implemented with

the actuator plane method first detailed in Ref. 7. In this

method, a zonal tmundary is made to coincide with the lo-

cation of the slot. The jet flow variables are then entered

as a I)oundary condition on the cotnputational ceils which
n|ntcl, the slot exit,. The turbulence ill the jet is handled

with the eddy viscosity model due to Roberts tS, while the

eddy viscosity in the boundary layers is calculated with the

Bahlwin-Lomax tm,del '6 with Degani-Schiff modifications
17

The body chosen for the investigation is the tangent-
ogive cylinder. The simple configuration facilitates the iso-

lation of the physical effects from those due to the geome-

try. It also lowers the nurnerlcal cost, allowing for a more

detailed investigation of the t)henomrnon. The config,|ra-

tion is illustrated in Figure 2. Two slot. [ocatious are em-

ployed in the investigation: one at the nose and the other

at. the cylinder-ogive junction. Both slots are located 90

dog. circumferentiaUy from the windward plane of synune-

try and are of constant thickness. The cases with the slot

at the cylinder-ogive junction were reported previously 8,
but will be used in this work for comparison with the cases

where the slot is located at the nose. The jet moment;urn
coefllcient is defined as

,,,,_si (t)
C/t -- I "2

where pj, ui, and S i refer to the density, mean velocity,
anti the slot area of the jet;, respectively. The reference

area, S_el, is the body diameter multiplied by the body

slot length. The same reference area wiU be used for both
the hody-slot and tile nose-slot cases to allow comparison
between the two.

Results

Ilrf. 8 identified one mechanism for force production

as the centrifugal force component. It is fitlly discussed

there and is only mentioned here for conxplrteness. Briefly,

a discontinuity, with respect to the circumferential angle

around the body, was found in the surface pressure con-

tours in the region of the slot and only where the jet was
present. Arl estimate was made of the centrifugal force by

carrying rod. a force l)alance on a differential element of the

fluid in the jet as it was forced to negotiate the curvature

of the body. The magnitude of this estimate was found to

agree closely with the nmgnib|de of the discontinuity in the

pressure distribution. Consequently, it was concluded that

the source of the discontinuity was the centrifugal force

componet, t created by the presence of tile jet. As the an-
gle of attack increased, the eontrihution of the centrifugal

component to the local force diminished due to the early

separation of the jot. The cross-sectional pressure distribu-

tions, indicated that at o = 10% the centrifugal force com-

ponent was more than 50% of the local side force, while
at e = 45 ° , it; was less than 30%. This mechanism for

force production is only important for the cases where the
surface curvature is not excessive and in flow conditions

where the jet remains attached a significant distance. At

very high angles of attack, for exmnple, the jet does not re-

main attached very hmg and consequently the centrifitgal

component of the side force is diminished. Similarly, iu the

cases where the slot was located in the nose, the extreme

curvature caused early jet separation. Consequently, the

contribution made by the centrifltgM force toward the total

force generated by the jet; for these c_es is also negligihle.

Creation of Circulation

Through in_pecti_m of the surface streamlines, insight
may be gained into another mechanism by which the jet in-

teracts with the ambient flow to produce a side force. Fi_;-

ure 3 shows the surface streamlines for the no-bh_wing and

t;lle blowing cases. The cases pertain to hoth the body-slot

and the nose-slot geometries. In both geotnetries, a clear

effect of blowing is to shift the l,cation of the lnimary sep-

aration line on the slot-side of the body. This effect is most

pronounced ill the vicinity of the slat but is also l)re,_0nt

downstream of the slot. (Tim location of the sqmr;,tion

lines on the opposite side of the body are also shifted but

the discussion will only reDr to the slot-side separations.)

Moving tl,e separation lines can produce a side force by

two methods. First, the as the lmundary layers are fl)rced

to remain attached hinter, the pressure along the body is

reduced further. This effect is significant in the body-slot

eases where the change in separation line location is most

pronounced. In the nose-slot case. however, changing the

position of setmration is not inxportant with respect to de-

creasing the pressure along the surface in the slot region

since the jet remains attached for such a small distance.

The second method of producing a side force entails the
nose vortices. These vortices are fed from the sheets of fluid

that leave the surface at the separation lines. By changing
the position of the separation lines, the trajectory of these

sheets and the position of the vortices also change. This

nlechanism for producing a side force will be addressed in

the section dealing with the interaction of the jet-supplied

vorticity with the ambient flow.

Changing Khe position of the separation lines is equiv-

alent to inducing circulation abo, tt the body. On a lifting

wing, the sharp trailing edge fixes the separation point
and determines the amount of circulation induced almut

the airfoil. In tile case under study, it is the jet which fixes

the separation point and, in turn, deternlines the nine,rot
of "circulation" induced almut the body. The circulati,,,l

induced around the body and its distrilmtion in the flow
field can be accurately quantified by directly computing

the circulation. Circulation is defined as,

F = - f'V' ds (2)
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This integral will be evaluated on concentric paths at

different perpendicular distances, r, from the surface as

shown in Figure 4a. This set of concentric integrals will be

carrie,l out at five different stations along the body. The

first station is immediately before the slot. The second is
in the middle of the slot, while the rest are downstream of

the slot (Figure 41)). Figure 4c shows the locations of the

integration for the nose-slot case.

Figure 5 shows the normalized circulation vs distance
fiom the surface calculated fi)r a case where the slot is lo-

cated at the cylinder-ogive junction and the angle of attack

is 30 ° . These eases arc fully detailed in Ref. 11. Figure

5a shows the ease with no blowing. As expected, because

of the symmetric flow, no net circulation is found at any

station along the body or any distance from the body. Fig-

,Ire 5b shows the circulation for the case where C_, = 0.1.

Immediately before the slot, x/L=0.26, (the slot is located

between x/L=0.28 and 0.46) the circulation is negligible

at every distance from the body. Half way ahmg the slot,

x/L=0.35, a circulation peak of F/a_l_, I = 0.3 is found at

a distance on the ,tr(ler of 10 -2 diameters from the surface.

This coi_,cides with the location of the maximum velocity

of the jet. Downstream of the slot, at x/L=0.55, the eir-

culati(m peak is diminished slightly in magnitude and is

found at a greater distance from the surface (i0-* diam-

eters) than at the previous station. Aft of this fl,selage

station, the circulation peaks continue to move away from

the surface. By the end of the body, the peak is located at

a distance on the order 0.5 diameters from the surface. Fig-

ares 5c and 5d show the circulation distribution for the C;,

= 0.2 and 0.4 cases, respectively. The same characteristics

as in the previous case are exhibited: A large circulation

peak is created in the region of the slot very close to the

surface. This peak (liminishes and moves away from the

surface as it travels downstream. At a large distance from

the surface, r/D, the circulation is always zero indicating

that the net vet,icily created by the jet is zero, as expected.

This figure shows that any potential flow model assuming

a bound vortex would only 1)e accurate in the region of the
slot. Downstream of the slot the model would have to be

modified to allow the shedding of the bound vortex.

The fact that the circulation starts out as bound and

then moves away from the surface suggests a conceptual

model which may be used to explain this component of the

interaction of the jet with the ambient flow field. Figure 6a
shows a lifting wing with a ,,early constant lift, distribution.

The I)(mud w_rtex does not end in the wing but contin-

ues downstrea,n through the wing tip vortices. Figure 61)

shows a body with a nearly constant side force distribution.

Its bound vortex also does not end in the body but con-

tin,ms downstream through trailing vortices. The trailing

vortex farther from the surface is created in the shear layer

between the jet irmxlnuuo velocity and the oral)ion, ttow, as

suggested by the inset it, Figure 6b, while the vortex in the

boundary layers and the vortex that trails closer to the sur-

face is ereated it, the shear layer between the jet tnaximmn

velocity and the surface. Figure 7 illustrates how such a

model can explain the circulation behavior noted in Figure

5. At a station along the slot, xl in Figure 7a. the circula-

tion line integral would first once,rater the positive bound
vortex which wot,ld raiso the circulation content, shown

schematically in Figure 71). Then, as the equal negative

vortex was encountered farther away from the surface, the

circulation content would return to zero. At a stati(m far-

ther downstream, x2, the integral would have to I)e at a

farther distance from the surface, r/D. before it began to

sum over the positive vortex. As in the previous case, as

the integration proceeded over the negative trailing vortex,

the total circulation wouM. again, return to zero. The jet

appears to be creating a bound vortex in the region of the

slot, This vortex can not end the slot region and. there-

fore, continues downstream while moving away from the
sltrfaee.

Jet Vorticlty Interaction with Ambient Flow

The previous section estal)lished that the jet was cre-
ating vorticity in the flow field. At, estimate for the quan-

tity of vorticity created can be obtained by integratinR the

v,,rti,-ity through out the flow fiehl, tlowever, si,tee equal

amounts of both positive m,d negative vortieity are pro-

dated, a simple integral would always show zero net vor-

tieity. Since by Stokes' theorem the line integral in eqn. 2

ll,ay ])e l'¢?cast ;is,

r_=-/£w.dh (a)

an estimate for the net vorticity center,, at a parti(-_dar x"

station may be obtaiued by noting the value of this integral

far away from the body. As shown by Figure 5b, the net

vortieity, at a large r/D, is zero at every x statiou. If

instead, the absolute value of the vorticity is iutegrated, an

estimate for the total vorticity in the flow field is obtained.

This integral has the form,

a--f£1w_IdA
(4)

Figure 8 shows the value for G at each longitudinal station

along the body for the no- blowing case and the case where

C s = 0.2. In the region of the slot, the jet is sl,own to
nearly douhle the vorticity conteltt in the ttow field, t[ow-

ever, most of this vorticity is canceled near the end of the

slot. The remaining, or residual, vorticity is transported

downstream as shown by the increased amount of vorticity

in the affbody.

The helieity density is contours fi)r the blowing cases

provide a clue ,as to the nature of the interaction of the

residual vorticity with the tlow fiehl in the aft body. Figure

9 shows the cases where the slot is located on the cylinder-

ogive junction and c_ = 10 °. At this angle of attack, the

vorticity dim to the no-blowing flow field is minimal (as
shown iu Figure 9a) and the effects of the jet are more

readily isolated. The jet, being con, posed of two shear

layers, dmnl)S both positive and negative vorticity into the
flow field. These vortices or vortex clouds then interact

with the ambient flow field. Figure 9b shows that after the

positive w_rticity, denoted in black, is released, it remains

close to the surface, while the negative vorticity, denoted in

grey, moves away from the surface. This suggests that the

location at which the w)rticity is released is important to
the extent or nature of its interactiml with the s,,rro,mdin_

flow field. The positive wwticity is released in the shear

layer betwpeu the jet maximum velocity and the surface.
where the velocity comtmnents normal t,) the surface are
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snlall.In tl,eaft body,it consequently moves away from

the surface at a slow rate. The negative vorticity, however,

is released into the external flow where the velocity normal

to the surface is higher. It is entrained by the external flow

and carried away from the surface at a much faster rate.

The interaction of the jet-released vorticity with a

flow field where stronger nose w_rtices are present can be
observed in ttle cases computed at a higher angle of attack.

Figures 10a-10d show the helicity density contours fi)r the
cases at c_ = 30 °. These are the same cases examined in

the section dealin_ with circulation. At the lowest blowin_

strength, Cj, = (1.1 ill Figure 10b, the w_rtex on the sb_t

side of the body is made stronger. This is indicated by the

fact that the slot- side helicity structures, near the end of

the body, contain a larger number of contours than their

count(,rlmrts ill the no-blowing case. (Because tile outer

contours in this figur'e all have the same value and the

same increnlent between contours, a larger nmnber of con-

tours indicates a stronger vorticity value in the contour at
the center of the vortex.) Tile positive vorticity fllrnished

I)y the jet is apparently combining with the slot-side vortex

increasing its strength, while tile negative vorticity, having

been rele,x_ed above or farther away from the body than

the vortex sheet that feeds the vortex on the slot side, is

carried away and is not entrained. The interaction, there-

fore, may be thought of as "linear". The behavior is not

truly linear in the mathematical sense but this term is used
to indicate that the behavior resembles a superposition of

vorticity. Also, it must be recognized that the effect of the

jet is not limited to strengthening the slot-side vortex. Si-

multaneously, the vortex on the opposite side is weakened.

The lmsitions of the vortices with respect to the surface are
also altered. These effects, however, were fully described

in Fief. 8 and 11 and for the sake of brevity the interac-

tion of the jet with the flow field will be "catalogued" by
its effect on the slot-side vortex. In the spirit of the dis-

cnssion, however, the entire effect of tile presence of the

jet is being considered. At the larger blowing strengths,

Ct, = 0.2 and 0.4, the slot-side vortex downstream of tile
slot is weaker than its counterpart in the no-blowing case.

This indicates a fundamental change in the interaction of

the jot with the ambient flow field. The idea of simple

superposition of vorticity no longer holds and a non-linear
behavior is exhibited.

The sectional side force distribntion in Figure 11
shows that where the linear behavior was observed, the

slot side vortex was made stronger and tlle side force was

nearly constant in the aftbody (C_, = 0.1). Conversely,
where the non-linear behavior was observed, the slot side

vortex was not made stronger and the side fl>rce decreased

in the aftbody (C I, = 0.2 an<l 0.4). This establishes a re-

lationship between the vortex strength behavior and tile
side force characteristics. The reason why the change in

behavior takes place, however, still requires some clarifi-

cation. This change in behavior was noted for the cases

where C v = 0.2 and 0.4. The circulation distributions for
these cases are shown in Figures 5c and 5d. Comparison

with the case where C, = 0.1 reveals that tile only dif-

ference is a negative circulaticm peak, in the aftlmdy near

the surface, displayed by the cases where tile change in

behavior was noted. D>r example: the negative peak ill

the x/L = 0.90 curve at r/D = 10 -I in Figure 5c. The

appearrulce of a negative circulation peak signals the start
of the non-linear behavior.

The bound w)rtex model, fi_r the jet int,,racti,m with

the ambient flow, stipulates that in che region (,f the .jot,

more positive vorticity will be produced at the surface than

negative vorticity. (The total sum of the vorticity being

produced is still zero because the outer shear layer of the

jet is producing negative vorticity.) This net positive pro-
duction at the surface is manifested in the circulation dis-

tribution (Figure 5) as a positive slope near the wall, for

the curves in the slot region. As the vortex leaves the sur-
face, however, the net sum of vorticity prod,teed at the

wall should return to zero as in the no-blowing ease. This

is indeed what happens as shown by the zero slope, near
the wall, of the circulation disCributicm curves pertainint_

to the aftbody {x/L = 0.9 ill Figure 51,). Therefore, the

simple nlodel of a bound vortex that leaves the surface does

not provide a mechanism for the aftbody to be prod,wlng

a l,et sum of negative wn'ticity at. the surface of the I_,dy.

In an effort to understand the reason behind the neg-

ative circulation peak it is necessary to examine the behav-

ior of tile nose vortices in the presence of blowing. Figure

12 shows the off-body particle traces for the c, = 30 ° c,x_es.

The sh,t, in this figure, is denoted with two parallel lines

along the body. The vortex on the slot side. is shown with

solid imrticle traces, while the w_rtex on tl,e f_pposite side

is shown with dashed particle traces. In the no-blowing

ease, the nose vortices are symmetric, ,as expected. At tile

lowest blowing strength, C, = 0.1, the vortex on tlw slot

side of the body remains close to the surface while tile

vortex on the opposite side begins to lift off. Because the
slot-side vortex remains close to the surface, the positive

vorticity fltrnlshed by the jet is able to be entrained in the

slot-side vortex. Consequently, the interaction of the jet

with the flow fieht appears additive or "linear" in nature.

At C_, = 0.2, the slot-side vortex lifts off the surface at
the start of the slot region, while the vortex on the oppo-

site side lifts off at a position forward of its counterlm.rt

at the lower blowing strength. Tile lifting of the slot-side
vortex is the reason for the change in behavior. Tile jet

fltrnished vortieity can not simply combine with the nose
vortex because it has left the vicinity of the surface. Tile

helicity figures show a weaker vortex on the slot-side, for
the non-linear cases, because this vortex no longer contains

the vorticity coming from upstream. The vortex in the

aftbody in the non-linear cases is a new w_rtex which has

originated in the slot region, perhaps with the separation

of the jet. When the slot-side vortex leaves the surface,
the body begins to experience alternate shedding in space.

The shedding is quasi-steady and only dependent upon po-
sition on the body. The alternate shedding of vortices is

tile reason behind tile negative w_rticity peaks that are ob-
served in all of the cases where the side force decreases in

the aftbody. If tile body was sufhciently long, the surface

wouhl begin to again shed a net, positive vorticity. It is

possible to see this reversal ill a flow field computed about

an extended body. Figure laa shows a body that is 2.42

tinles the length of tile original body. The flow conditions
are identical to those of the _ = 30 ° case with C,, = 0.4.

Figure 13b shows the circulation distribution for the aft-

body of this case. At x/L --- 0.9, a negative circulation

peak is hwated near the surface as is observed in tile short
bodies. However, near the aftbody, x/L=2.32, the circula-

tion near the surface is again positive. Therefore, the net

sunl of vorticity is alternating bet.wren positive and nega-

tive. Figure lac _hows the side force distribution for the
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extended body case. The sectional side force alternates

between I)ositive and negative in the aftbody.

Convective Instability

The cases which employed a slot located on tile nose

provide information concerning another interaction mech-
anism of the jet. Figure 14 compares the total side force

produced by the nose-slot cases with that produced by the

body-slot cases. For very low jet blowing strengths, the

nose slot appears to be more effecient than the slot located

on the body of the model. The case with a C_ = 0.005 cre-

ates a C_ _ 0.80. This side force is 160 times greater than
the momentum of the jet. The reason for this apparent

efficiency will be explored in this section.

Figure 15 shows the helicity density contours for the
nose-slot cases. The flow features of the case where C_, =

0.005 are not significantly different from the features of the

case where the blowing strength is 40 times greater (Ca, =

0.2). The mere presence of the jet appears to be enough
to cause a shift in the flow field from a symmetric config-

uration to an asymmetric one. Ref. 19 established that

the symmetric flow field around a body at a high angle of

attack was convectively unstable and that a perturbation

at the nose c(m]([ trigger a global change in the charac-

ter of the flow. The jet in the nose-slot cases is providing

the lwrturbation, tile pneumatic bump that shifts tim lo-

cal flow near the nose and, in turn, changes the flow field
downstream.

The theory that tile jet is exciting a convective in-

stability is supported by the circulation distribution, the
side fl)rce distributions, and experin,ents. Figure 16 shows

the circulation distribution fi)r the nose-slot case with C,

= 0.005. The jet produces a circulation spike along the

slot, x/L = 0.12, which diminishes immediately aft of the

slot, x/L = 0.32. Downstream of tiffs station, however,

the amount of circulation progressively increases. The re-

Sl)onse of the flow field to the presence of the jet grows
d_)wnstreant of the slot. This is characteristic of an un-

stable response to a perturbation. Figure 17 shows the
side force distribution for the nose-slot cases. In each case,

the side force drops to near zero immediately after the slot.

Downstream, however, the side force begins to increase and
continues to increase over much of the aftbody. Figure 14

shows the total side force vs the blowing strength for the

experimentQ °. With no hlowlng present, the experimen-

tal body has a side force of the same order of magnitude

as the side force produced by the nose-slot case with C,

= 0.005. This side force is being caused by the geometric

perturbations that exist on the surface of tile body. Thus,
the characteristics of the flow field due to the presence of

the jet are similar to those of a flow field due to a response

to a perturbation.

Fig,,re 18 shows the nu,nerical flow field response to

a true geometric perturbation in terms of the circulation
distrilmtion. The converged flow field was provided by Ref.

19. The angle of attack, Ileynolcls n,tmber, and Math num-

ber are 30 °, 4(10 s), and 0.2, respectively. Figure 18 shows
the circulation distribution for the geometrically pert,,rbed

body. It is clear that a perturbation can cause the circu-

lation l,eaks el)served iu the nose-slot cases.

SUnllnary

The examined interactions of the jet wM, the ambi-

ent flow can now be s,nmnarized. The jet, with its two

shear layers, prod,tees two vortices, or more exactly, vor-

tex clouds, of equal but opposite strength. The vorticit, y

produced in the shear layer farther away from the surface
is carried away from the body and does not appear to play

a large role in the production of side force. The vorticity

produced in the shear layer near the surface remains in
the boundary layer in the slot region and then begins to

move away from the s,lrface aft of the slot. As it moves

away, it is entrained in the slot-side nose vortex increas-

ing its strength and maintaining the side fi)rce along the

aftbody. If the jet is of sufficient strength, the slot-side
nose vortex leaves the surface near the beginning of the

slot. The jet-filrnished vortieity is consequently not en-
trained in this vortex. The body begins to shed vortices

alternately in space and the side force diminishes in the

aftbody. If the body is sufficiently long, the side fi)rce may

become negative (Figure 11, C, = 0.4) or alternate in the

aftbody (Figure 13c). This is the reason why Ref. 8 noted

that at high blowing strengths or high angles of attack, the
total side force could decrease with increasing C_,. This is

depicted in Figure 19 which is reprinted from Ref. 8. At

c_ = 45 ° and C, = 0.4 the side force is lower than at

Ci, = 0.2 fi)r the same angle ,)f attack. Finally, if tile slot

is located very close to the nose, the jet can produce a side

force simply by perturbing the symmetric flow field into

an asy,nn,etrie state. The relative importance t)f this fore,"

production meclm nism is dependant upon the location of
the slot.

Conclusions

A study of the interactions of a tangential jet with

the flow field around a tangent-ogive cylinder nt a,, angle

of attack was conducted. The fi)llowing conclusions were

made about the interaction of the jet with the external

flow and the force production mechanisms:

o Part of the jet induced side fi)rcc can,e fron, the
centrifuKnl force developed when the nmmentum cont;dn,'d

in the jot. was forced to follow the curvature of the body.

This conlponent was only important in the vicinity of the
slot where it. t,roduced ,as much as 60% of the local side

force. Its in,portance diminished, due to early separation

of the jet, as the angle of attack increased or as the slot
was moved toward the nose.

o The jet induced circulation about the body. The

circulation was initially located in the bo,,ndnry layers, trot
downstreRm of the slot, it moved away from the surface.

o The jet created a large amount of vorticity in the

flow field. The majority of the jet-fi,rnished vorticity was

canceled immediately after tim end of the slot. The re-

maining vorticity combined with the nose vortices to alter

their strength.

0 Part of the side force produced by the jet was due

to displacing the nose vortices. If the jet hlowing strength
was sufficiently large, the body began to shed vortices al-

ternately in space.

o When the slot was located near the nose, the jet. was

alde to produce a side force I)3" perturl)ing the symmetric
flow field into an asymmetric state.
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Fig. 1: Tangential blowing concept.
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Fig. 2: Configurations under study.

Fig. 3: Surface streamlines; a = 30 deg; /?trJ =

5.2x104; Alo_ = {I.2.
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Fig. 4: Circulation line integral paths.
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a) ctt = o.o b) Ct_ = 0,4

Fig. 9: Hellcity density contours; a = 10 deg; ReD =

5.2X104; AIoo = 0.2.

slot

Fig. 10: tlelicity density contours; a = 30 deg;

Rt:D = 5.2x104; AI_ = 0.2.
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EFFECTS OF AFT GEOMETRY ON VORTEX BEHAVIOR AND FORCE

PRODUCTION BY A TANGENTIAL JET ON A BODY AT HIGH ALPHA

G.I. Font*

MCAT Institute
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Nomenclature (continufd)

Explored in this study are the physical effects of
the numerical treatment of the aft geometry on the vortex
behavior and force production due to a tangential jet on a
body at a high angle of attack. The study is conducted
numerically by solving the three-dimensional,
compressible-flow, Reynolds-averaged Navier-Stokes
equations. Two tangent-ogive cylinder configurations are
used. The first configuration locates the computational
exit plane at the end of the body, while the second caps
the end of the body with a hemisphere and locates the exit
plane far downstream. In both configurations, a blowing
slot is located at the cylinder-ogive junction.
Comparisons are made between results for the two

configurations for cases with and without the jet present.
Results indicate that inclusion of the wake of the body in
the computations, while altering the flow in small
details, does not change the character of the flow. The
vortex behavior remains unaltered and the force

distribution, while changing to some degree in
magnitude, does not change in shape.

Cn

Cn

Cy

Cy
Ctt
D

i.j
M

ReD

Aj

normal force coefficient

sectional normal force coefficient: dCn/dx
side force coefficient

sectional side force coefficient: dCy/dx
blowing momentum coefficient (see text)
cylinder diameter (see Fig. 1)
slot length (see Fig. 1)
Math number

Reynolds number, based on cylinder diameter

slotarea,8jLj
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Amf reference area, Lj D
V flow velocity magnitude

angle of attack, degrees

8j slot thickness (see Fig. 1)
p density

Subscrigts

D based on cylinder diameter
j jet
,0 _estream reference conditions

/Rtt..oAar.liaa

The requirement of aircraft for higher levels of
maneuverability has fostered numerous studies on
improving their performance in the high angle of attack
flight regime. Aircraft attempting to maneuver in this
flight regime are prone to departure from controlled flight
as their control surfaces become immersed in the flow

separating from the fuselage and wings and lose
effectiveness. The situation is exacerbated by the flow
near the nose which tends to become asymmetric at high
angles of attack, producing a side force that is
destabilizing to the aircraft. Research into methods of
correcting these problems has included studies where the

flowfield near the nose is altered by pneumatic means 1-12

in an effort to either reduce the asymmetry or provide an
additional side force that can be used to control the
aircraft. Numerical treatment of this problem has often
involved studies where the flow around an axisymmetric
body is computed and where the body is extended to the

computational exit plane. 7-12 This creates a non-
physical situation where the influence of the wake from
the body on the flow upstream is not taken into account.
The present study is an attempt to ascertain the effects of

the wake on one pneumatic control system: tangential
slot-jet blowing.

In this study, computations are made for a body
that extends to the computational exit plane and one in
which the end of the body and wake are included.
Comparisons are then made between the results of both

types of computations at two angles of attack. This
paper will show that inclusion of the body end and wake
in the computations does not significantly change the
physical character of the flow.
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The intention here is to study the effects of the
numerical treatment of the aft end of a tangent-ogive

cylinder on the flowfield characteristics and the side force
produced by a tangentially blown slot-jet. The
configuration under study is shown in Fig. 1. The
model has a 1.94 caliber tangent ogive followed by a
cyfindrical section. Without the hemispherical end cap,
the body is 7.44 calibers long. A jet slot is located on
the cylindrical part of the body, immediately behind the
ogive. The end of the cylinder is closed with a
hemisphericalcap.

Computations of the flow field around this
configuration were carded out in two ways. In the first,
the computational exit plane was placed at the end of the
cylinder, at the bemisphere-cylinder junction. In the
second, the computational exit plane was located twenty
body diameters downstream from the end of the body.
The grids for both configurations (shown in Fig. 2) are
clustered near the surface and in the region of the slot.
The grid with the flush exit plane contains 52, 100, and
60 points in the lougimdinal, circumferential, and normal
directions, respectively, while the grid with the far-field

exit plane is 64 x 100 x 60. The y+ at the first grid
point off the surface is everywhere less than three,
including the region where the jet is present.

The study is carried out numerically by solving
the Reynolds-averaged, compressible-flow, thin-layer,
Navier-Stokes equations. The code used to obtain the
solution is F3D. It is well documented in the llteratm'e
and further details may be found in Refs. 13-16.
Solution is accomplished in a zonal manner.
Communication between the zones is handled through a
oue-cen overlap where the cells match on a one-to-one
basis. The zonal arrangement is shown in Fig. 3. The

jet is implemented with an actuator plane method. 7 The
longitudinal interface between zones in the slot region is
u_ to introduce the jet into the computation as an
actuator plane boundary condition.

The mrlxflence model for the boundary layers is

the Baldwin-Lomax 16 model with Degani-Schiff

modifications. 17 The turbulence model for the jet was

developed by Roberts. 18 The turbulence model for the

boundary layers was included when experiments showed
turbulent behavior in the boundary layers in the jet and

aft of the slot, while blowing was present. 11

The boundary condition implemented on the
numerical exit plane is a zeroth order extrapolation. The
same exit boundary condition was employed for both
configurations, the only difference being the location of
the exit plane. In the case of the capped body, the exit
plane is defmed as those stations that fall within a 50

deg. ray extended back from the tip of the nose with 0
deg. defined as the longitudinal axis. This was done in
order to assure that no gradients existed between the
region where the extrapolation was in effect and the
region where the outer boundary was held at free stream
conditions. Computations were carried out with the exit
plane at larger distances from the body and no changes
were found in the results.

The flow conditions for the present study are as
follows: the angles of attack used are 30 and 45 (leg., the
Mach number is 0.2 and the Reynolds number, based on
freestream conditions and cylinder diameter, is 52000.
These conditions were chosen to facilitate comparison

with previous studies 4,10"12

Resutts

a = 30 deg, no blowing
Figure 4 displays the surface streamlines and the

off-body particle traces for both bodies where no blowing
is present and the angle of attack is 30 deg. In the
following discussion, the case where the end of the body
and wake is included in the computation will be refened
to as the "capped" body. The case where the
comPutational exit plane is placed flush with the end of
the cylinder will be referred to as the "flash-exit" body.
The separation pattern along most of the body is identical
for the two cases. Differeaces occur only near the end of
the body where, for the case where the end of the body is
included in the computation, the skin-friction lines,
including the primary and secondary separation lines,
must end at singular points on the hemispherical cap.
Off-body particle traces, also shown in Fig. 4, indicate

the vortex trajectories. The vortex of one side of the
body is denotedwith solid lines while the vortexon the
other side is denoted with dashed lines. For both cases,

the vortices are symmetrically located on the leeside of
the body. Their distance from the surface at any point
along the body is not significantly affected by the
inclusion of the wake in the computation. The vortices
in the capped body computation begin to align with the
onset flow aft of the end of the body.

Figure 5 shows the total vorticity magnitude at
two stations along the body. The in'st station is near the
beginning of the cylindrical part of the body, at x/D =
2.8. The second station is near the end of the body, at
x/D = 6.1. At both stations, the vorticity magnitude and
position of maximum vorticity is in good agreement
between the two cases indicating that the influence from
the aft end geometry is minor.

Figure 6 shows the normal force distribution
for the cases in which no jet was present. Only stations
upstream of the hemispherical end cap are shown. The
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normal force is the same for both beeries over the forward

portion of the body. The normal force for the capped
body is slightly lower in the aftbody at nearly all
stations.

a = 30 deg, blowing present
The cases where the tangential slot jet was

present in the computation will now be discussed. The
jet momentum ratio, def'med as,

was 0.2 providing a jet exit velocity of Mj = 0.5. In
this expression, Aj is the slot area and Are f is the slot

length multiplied by the diameter of the body. Figure 7
shows the surface streamlines and off-body particle maces
for the cases with a tangential jet present. The surface
streamline pattern for both cases is similar in the nose
and aft body regions. The off-body particle traces show
that the vortex behavior is changed somewhat by the
inclusion of the wake in the computation. The siot-side
vortex for the capped body computation, while lifting
from the body at the same location as in the flush-exit
computation, remains closer to the body. Part of the
reason for this effect is that the jet does not separate at
the same location for both cases. In the capped body
case, the jet remains attached farther over the top of the
body in the forward part of the slot, as seen in Fig. 8,
where the surface streamlines are viewed from above.

The trajectory of the vortex on the side of the body
opposite slot (dashed traces) does not change with the
change in the position of the exit plane.

The vorticity magnitude contours for the
blowing cases and a = 30 deg. are shown in Fig. 9.
Because the jet remains attached longer for the capped
body case, the jet-provided vorticity has greater
interaction with the vortex opposite the slot.
Consequently, the vorticity magnitude patterns are very
different between the two cases at station 1, in the slot

region. Downstream of the slot, however, the vorticity
magnitude pattern is negligibly different between the two
cases. The vortex that lifts off the surface on the slot

side (solid lines in Fig. 7) is not resolved in the vorticity
magnitude calculations. (It should appear to the left, as
viewed, of the high vortex.) This is because the vortex
left the body near the nose and, consequently, does not
carry as much vorticity as its counterpart on the other
side of the body. This, combined with the relative
coarsenessof the grid at thatdistancefrom the body,

make thegradientstoosmalltoresolvethevorticity.

The side and normal force distributions for the

blowing cases are shown in Fig. 10. A large normal

force is created in the slot region (Fig. lOa) due to the
suction created by _e jet as it remains attached over the
leeside of the body. The normal force distribution for
both cases closely resemble each other in magnitude as
well as in shape. Over most of the aftbody, the force
produced by the jet in the capped body case is lower than
the force produced in the flush-exit case. The normal
force for both cases is larger than the force resulting in
the no-blowing computations (Fig. 6). The side force
distribution is shown in Fig. 10b. The shape and
magnitude, as with the normal force, does not differ
greatly between the two cases. The body where the end
is included in the computation produces a greater side
force in the slot region due to the jet remaining attached
to the surface longer. Downstream of the slot, however,
this case produces a smaller side force. The side force
levels remain close to within one body diameter of the
rear of the cylinder.

a = 45 deg, no blowing
Figure 11 displays the surface streamlines and

the off-body particle traces for the no-blowing cases
where a = 45 deg. The surface streamlines for the

capped body and the flush-exit body are virtually identical
over the cylindrical part of the body. The off-body
particle traces are also very similar. The only differences
manifest themselves after the hemisphere/cylinder
junction where the vortices of the c4_pped body turn
upward. Figure 12 shows the total vorticity magnitude
contours for these cases. At station 1, the treatment of
the aft end of the body does not appear to change the
solution. Closer to the aft end (station 2), however, the
vortices of the capped body are weaker. This leads to
lower suction on the leeside of the body and,
consequently, lower normal force levels in the aftbody as
shown in the normal force distribution displayed in Fig.
13. The weaker vortices and lower suction on the capped
computation are analogous to the effects observed when a
2D cylinder is compared to a sphere of equal diameter.
Perhaps the three dimensional nature of the capped body
is providing a mechanism for pressure relief.

a = 45 deg, blowing present
Figure 14 shows the surface streamlines and off-

body particle traces for the blowing cases where the angle
of attack is 45 deg. The jet momentum coefficient, Ctt,
is also 0.2. In the forward part of the body, the
separation line patterns are very similar for the two cases.
Aft of the slot, some differences are observed in the

location of the secondary separation lines. The off-body
particle traces show no differences in the vortex

trajectories for the two cases. Figure 15 displays the
total vorticity magnitude contours. In the slot region,
the two cases are not significantly different. In the
aftbody, however, while the vortex orientation is the

same, the vortex strengths of the capped body are, again,
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lower. The difference in strength is probably responsible
for the differences in the secondary separation pattern

observed in the afthody in Fig. 14.

The sectional force distributions for the blowing

cases are shown in Fig. 16. The normal force in the slot
regiondecreasesfor both cases when compared to theno-

blowing computations. This is becansethe jet does not
remain attached for a significant distance over the leeside
of the body. , Thus, while the jet does not create
significantsuctionover the leesideofthe body, itdoes

move the position of separation toward the leeside of the
body enough to reduce the normal force. In the aftbody,
the normal force does increase to levels higher than
observed in the no-blowing cases. The flush-exit
computation, again, produced higher force levels than the
computation with capped body. The side force
distributions are shown in Fig. 16b. The shapes of the
distributions for both cases are vezy similar to each other
until about x/D = 6.5. However, the side force is
significantly lower for the capped body than for the flush-
exit body over the entire aftbody.

A numerical study has been conducted exploring
the effects on vomtx behavior and side fc_e Woduction of
a tangential jet subject to the inclusion of the aft end of
the body and wake in the computations. Results indicate
that inclusion of the wake of the body in the
computations, while altering the flow in details, does not
change the physical character of the flow. The flow
features of the computation that placed the numerical exit
plane at the end of the cylinder of the body are
comparable to within one diameter of the end of the body
to those of computations that moved the exit plane to the
far-fleld. The force distributions, while being similar for
the two cases, were generally lower in the aftbody for the
case where the end of the body was included. This was
probably due to the lower vortex strengths observed in
the aft end of the capped body cases, especially at the
higher angle of attack. The differences between results
for the two cases diminished with decreasing angle of
attack.
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|) body with flush exit plane

b) body with fw-fidd exit plane

Rg. 4: Surt'sce suesmllnes end otT-Ix_y psn/cIe trsces;

ct - 30 dell, ReD - 5.2x104; M.. - 0.2; no blowing.

a) body with flush exit plane b) body with far-fiekl exit plane

Rg. 5: Vonicky malVdtnde contoun;

a = 30 (leg; ReD = 5.2xI04; M.. = 0.2; no blowing.
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Fig. 6: Normal force distribution;

a = 30 (leg;. ReD - 5.2x 1(_; M_ - 0.2; no blowing.
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#) body _th flush exit plane

b) bodywith fas'-fleMexit plane

Pig. 7: SurfacesUeamlJnesand off-body particletraceswith Mowing present;
a - 3Odes; ReD - 5.2x104; M.. = 0.2; Cit=0.2.

a) body with flush exit plane

b) body with far-field exit pl_

PJJ.8: Sm'fncestnmmlines(top view) with blowing present;
a - 3o des;ReD= 5.2xt_ M. = 0.2;Cp-O.2.

(

t) body with flush exit plane b) body with far-field exit plane

_s.9:.Vorecity,mSnlmdecmto_o withbring
a- 3odes;ReD= 5.2x!04; M. 0.2; L'p=0.2.
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b) side force distribution

Fig. 10:. Force distributions with blowing present;

a = 30 deg; ReD = 5.2x104; M,. - 0.2; Cp=0.2.
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a) body with flush exit plane b) body with far-field exit plane

Fig. 12: Vo_city magnitude contours;

ec = 45 (meg; ReD = 5.2x104; Mm = 0.2; no blowing.
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Fig. 13: Normal fome distribution;

6 8

-, cz = 45 deg; ReD = 5.2x 10_; Moo = 0.2; no blowing.

b) body with far-field exit plane

Fig. 1 I: Surface stresmline_ and off-body particle trace_;

a = 45 deg; ReD = 5.2x104; M.o = 0.2; no blowing.
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a) body with flush exit plane

b) body with far-field exit plane

Fig. 14: Surface stmu_nes and off-body pmlicle traces with blowing present;

a = 45 (leg;, ReD = 5.2x I04; M.. = 0.2; Cp=0.2.

a) body with flush exit plane b) body with f_-field exit plane

RE. 15: Vorticity magnitude contours with blowtnll present;

a = 45 (leg; ReD = 5.2x104; M,, = 0.2; Cp=0.2.
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Fig. 16: Force distributions with blowing present;

a = 45 (leg; ReD = 5.2xl04; M. = 0.2; Cp=0.2.
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G. I. Font
MCAT Institute
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Abstract

The solution of the equations adjoint to the Navier-Stokes equations provide a

means to explore the flow field sensitivity to a small changes. This allows the optimization

of the design of a flow control configuration. This work develops the formulation

necessary to numerically solve the adjoint set of equations. It explores the computational

issues involving discretization, coordinate transformation, flux linearization, factorizarion,

and implicit formulation of the adjoint set of equations.

lntroductigq

High speed civil transports, whether supersonic or hypersonic, must land and take

off at high angle of attack because of their highly swept wings. Aircraft attempting to

maneuver in this flight regime are prone to departure from controlled flight as their control

surfaces lose effectiveness when becoming immersed in the flow separating from the

fuselage and wings. The situation is exacerbated by the flow near the nose which tends to

become asymmetric at high angle of attack, producing a side force which is destabilizing to

the aircraft. One method of correcting these problems is to alter the flow field near the

nose by pneumatic means in an effort to either reduce the asymmetry or provide an

additional side force which can be used to control the aircraft. Traditionally, analysis of

these control methods involves multiple computations of a single flow field subject to a





single pneumaticperturbation in an effort to "map" the effectivenessof the control

methods. The intricate nature of the three-dimensional flow dynamics means that this map

does not have an obvious form. Researchers are led to perform repeated computations for

different levels and physical configurations of the perturbation. Consequently, the

assessment of the effectiveness of any control method by this means is prohibitively

expensive.

The aim of the present work is to present an alternative strategy to that described

above for finding effective control configurations by direct computation. The present

scheme makes use of the solution to the adjoint to the linearized Navier-Stokes equations.

This solution plays an integral role in the search for an optimal configuration.

The solution to the adjoint linearized Navier-Stokes equations, subject to carefully

chosen boundary conditions, provides a description of the sensitivity of the flow field to a

general perturbation. The adjoint field, obtained by a single computation, maps the

effectiveness of any control configuration upon a quantity such as, for example, drag,

provided the control force is sufficiently small. The interpretation of the adjoint field is

straight forward: If the adjoint field is very large at some point in the flow, then the

application of even a small control force will give rise to a large response. On the other

hand, if the adjoint field is very small even large quantities of control will have very little

effect.

The examination of the linear sensitivity is not a restriction. In the language of

optimal control theory, the adjoint solution defines the functional derivative of the drag with

respect to changes in the control configuration. Our adjoint solution defines a "steepest-

descent" direction by which a search may be conducted for optimal solutions of a

configuration which can involve large amounts of control (see Ref. 1).

The idea of optimization in fluid mechanics is certainly not new. To date most

efforts at optimization have involved inviscid calculations, and aimed at minimizing form

drag (Ref. 2). Alternatively, airfoil sections have been designed based on the desire for a

particular surface pressure distribution (Ref. 3). In the present work the sensitivity of

solutions to the full Navier-Stokes equations are being investigated. The non-self-adjoint

nature of the governing equations raises new issues in both theory and computation.

Solution of the adjoint equations have been obtained using spectral methods. These

solutions, however, were limited to configurations which could be described analytically





and2-dimensionalflow fields (Ref.4). In aneffort to extendthemethodto non-analytical
configurations,afinite differenceapproachwill beadoptedfor thesolutionof the adjoint

equations.Themethodlendsitself to extensioninto3-Dimensionalcomputationsalthough

thepresentwork will belimited to 2D.

The present work starts the numerical formulation from the adjoint set of equations

first set forth by Ref. 4. This work develops the framework necessary to numerically solve

the adjoint set of equations. It explores the computational issues involving discretization,

coordinate transformation, flux linearization, factorization, and implicit formulation of the

adjoint set of equations.





Numerical Formulation

The set of equations which is adjoint to the compressible Navier-Stokes equations

was first set forth by Ref. 4 as:,

Ou (--Ou _. Ov 1 02u 0t:"] (- Ou 1 02u_

--&+12U-_x + 3x +R-'ee3x-_+-_x]+_V-_ "'_ Re0y2) =0
(la)

0v (_ 1 02v_ ( _ _ 1 02vt--_y-3=0 (lb)--+ 0 -+ + g +2g + o3,2 0P
Ot Re o3c2 ) Re

3u 3v
--+ 0 (lc)
Ox -g =

Note that the pressure does not exist explicitly in any of the governing equations. This is a

consequence of using the incompressible formulation for the Navier-Stokes equations as

the starting point for the derivation of the adjoint set. To establish the actual adjoint

pressure a Poisson problem must be solved. Alternatively, the concept of pseudo-

compressibility can be employed. For a flow in which only the steady state is sought, the

continuity equation can be modified to include the pressure explicitiy:5

1 OP

]_2 0t
_ + V. R = 0 (2)

The parameter [3 represents the artificial speed of sound. The pressure term vanishes when

the solution converges, therefore, the final solution does not violate continuity. The

modified continuity equation becomes,

71" ÷_2 Ou0--7 _ -g-;x+/3z =o (3)

Equation (3) replaces lc as part of the governing equation set. The governing equations

can now be concisely written as,
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where the vectors, and tensors have the following components,
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Here, G and H are functions of space but are constant in time.

(4c)

Coordinate Transfer

Solving the adjoint set on a non-analytical geometry will require the equations to be

recast into a general, preferably a body-conforming, coordinate system. The mapping from

a two-dimensional cartesian system (x,y) into a general system (_,r/) is defined as

follows:

¢ = ¢(x,y)

7"!= ri(x,y)

The transformation is standard and the resulting metrics are,

_x = J(Yrl), _y =-J(x_7), r/x =-J(Y_), r/y =J(x_)

where the jacobian of the transformation is,

J = (x_y77 - x77y_ )-1

Applying the chain rule to the governing equations (4) gives:

(5)

(6)
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Identifies of the form,

a¢ -_t.T/ a_

can be used to rewrite the governing equations as,

at _- _ + a_L x ) @k J / ant, J )

1 IO(b_x+@.L)+ °3Cbrlx+drlYll+ _t_t--)-- _t--7- -)-;j

- _--_.e+_sa +-@_k-}--/J

- _ O _y O r/y

where J is not a function in time J * f(t). The second last term vanishes since,

{(._..) +(__),rl}={(y,q)_ +(-y<_),rl}= I 02Y 02y ;!._ 0"_--_'¢"J (10)

The last term also vanishes in a similar manner. The governing equations can now be

expressed in general coordinates as,
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where the vectors in equation (1 1) are described as,

and

b=LJ JJ'_= +

After multiplying through with the tensors G and H, the components can be fully listed.

The inviscid components are:

"2"O"(UCx/S)_ + V(vCx/J)¢ +(P_x/J)_-
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fl2 (U_x/J) ¢

FJ(U_y/J)_+2V(v_y/J)_+(P_y/J)_
_(v¢,/_)_

2U(urlx/J)r ! + V(v77x/J)r ! + (P77x/J)r 1

g(v_xlJ).

fl2(Urlx/J)rl

V(u_y/J)r I

U(uT"ly /J)77 + 2V(vTly /J)r l + (P77y /J)r I

_2(V_y/J)r 1

(12b)

(12c)

(12d)





while the viscous components of equation (11) are fully listed as:
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Thin-Layer Approximation

In flows which have a high Reynolds number, the computational effort to solve the

governing set of equations may be reduced by only evaluating the viscous derivatives that

are perpendicuar to the surface of the body. In these types of flows, the largest gradients

occur in the direction normal to the surface so deleting the viscous derivatives parallel to the

surface do not greatly affect the solution. This is referred to as the Thin-layer

approximation. In non-parallel flows, however, the direction of large gradients may not

be evident. The computational effort may still be reduced by deleting the cross

derivatives. This is equivalent to using the Thin-layer approximation in each coordinate

direction. Applying this strategy to the viscous derivatives gives:
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Flux Linearization

The solution of the adjoint set of equations will be accomplished in an implicit

manner to take advantage of larger time steps without encountering problems with stiffness

in the equations. The implicit formulation will require that the fluxes be linearized.

Linearization is possible if, for example, in the representative wave equation,





0a at;
+ m = 0 (14)at ax

the vector/) is a homogeneous function of degree one in f.

described as (Ref. 6),

The vector/) may then be

for all c_. The diferential involving /) in the representative wave equation may then be
written as,

N oa az;ax - ax aa- [8]
(16)

where [B] is held locally constant. Applying this to the adjoint set of equations (11)

gives,

aa+_r- ,aa+_ aa
8--7 t _'x]"_" [_y]_ = r 1aft _ aa 1 I aa "c'aa]+G Lr/xl_-_-+n [rly]_-_O+_ee.[B]-_.+ L l-b--_.oj_= 0

(17a)

where,
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Delta Form

The governing equations (11) must be cast in delta form to allow solution in an

implicit manner. This form follows directly from writting the governing equations at the

time step (n+l).

__ __ c_ (n+l) ^ + 1 r 0/_ 0_ ](n+l)
0a(n+l) + _ 0e (n+l) + H -JOt o3_ c9_ +_°3g(n+X)+_°Gh(n+l)0rl o97"/ _ee _-_- + _ _ =0

(18)

A fn-st order estimate of the fluxes at time (n+l) can be made in the following manner:

_(n+l) = _(n)+ k__.j ___tjdt= _(n)+[B](n)(r_pl)(n+l)
(19)

The governing equations may then be recast as,

(S_) (n+l)

At + ___ {_(n)+[_x](n)(r_fi)(n+l)}+ _{_(n)+[_y](n)(t_l)(n+l) }

+A___ {_,(n) +[_x](n)(_l)(n+l)}+ ___{fl(n) + [r/y](n) (_)(n+l)}
(20)

+ 1.__.__ [/_( n ) ) 1 0 [_(n)+[D](n)(sa)(n+1)}= 0+[c](n)(s&)(n+l)_q Re at/Re a_ t

Regrouping gives,

[[+At{-_[_x](n)+ _-_[_y](n)+_-_[rlx](n'+ _[ r/y] (n)

13-_ -_e-_ t]+ l_e [B](n)+ [c](n) ((_a)(n+l)=

(21)





Approximate Factorization

Directly inverting the left-hand-side of eqn. (21) is prohibitively expensive.

instead, the LHS is factored in the following form:

II+At{___[rlx](n)- 0 r l(n)1 0 }1+ H-_o[rlY] +----[c](n)Re377 (Sfi)(n+l) = RHS

If,

(22)

two tridiagonal block matrix systems are created which are easier to invert. Many schemes

are available which are optimized for the inversion of block tri-diagonal systems.

Multiplying out the LHS of eqn. (29) gives,

Re o_ [B](n)

[r/yJ
(23)

At2 { __._ [_x ] + =_ ff___[_y ] + _._e __ [B ]} =- 03 -- o3 1 03 (n)

= RHS

The last term is of order (At2). Thus, the accuracy of the scheme is not impaired.





Artificial Dissipation

Central differencing is utilized for the convective terms. Therefore, artificial

dissipation must be supplied to improve the stability characteristics of the relaxation

scheme. Fourth order smoothing terms will be added to the RHS, while second order

smoothing will be added to the LHS. The explicit smoothing term will have the form:

+At_eJ-l(s_ + S4)j[a] (24)

where d;_ and t_4 represent fourth order diferencing terms in the _ and 7/ directions,

respectively. This method of smoothing can not be used on the implicit side because it

woud create pentadiagonal block matrices. Solving such a system requires greater

computational effort, therefore, the implicit smoothing terms will be of second order:

+AtE i j-l(_)j and +AtE i j-l(_2)j (25)

Here _2 represents a second order diference operator.

Computational Concerns

Examination of the governing equation (11) shows that the diffusive terms have a

positive sign. If this equation were to be marched in time it would be unconditionally

unstable since the contribution from this term would grow without bound. The convective

terms are neutrally stable (in the sense that they have no bias with respect to time).

Therefore, to reach a converged state the governing set of equations must be marched

backward in time (negative time step). This is consistent with the idea behind the adjoint

equations since we are tracing the result back to the source. For this reason, the

smoothing terms (eqns. 24 and 25) are written with a positive sign.





Summary

The equations adjoint to the incompressible Navier-Stokes characterize the linear

response of the flow field to a small disturbance. The adjoint field obtained from their

solution maps the effectiveness of a control method to alter the flow. This work has, for

the first time, formulated these equations in a manner that allows their solution with

computational fluid dynamics techniques. It has addressed computational issues of

discretization, pseudo-compressibility, flux linearization, implicit formulation, approximate

factorization and artificial dissipation. A method of solution has been postulated that will

overcome the instability inherent in the governing equations.
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